Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Cancer Lett ; 588: 216806, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38467179

RESUMO

The aim of this study was to investigate the underlying molecular mechanism behind the promotion of cell survival under conditions of glucose deprivation by l-lactate. To accomplish this, we performed tissue microarray and immunohistochemistry staining to analyze the correlation between the abundance of pan-Lysine lactylation and prognosis. In vivo evaluations of tumor growth were conducted using the KPC and nude mice xenograft tumor model. For mechanistic studies, multi-omics analysis, RNA interference, and site-directed mutagenesis techniques were utilized. Our findings robustly confirmed that l-lactate promotes cell survival under glucose deprivation conditions, primarily by relying on GLS1-mediated glutaminolysis to support mitochondrial respiration. Mechanistically, we discovered that l-lactate enhances the NMNAT1-mediated NAD+ salvage pathway while concurrently inactivating p-38 MAPK signaling and suppressing DDIT3 transcription. Notably, Pan-Kla abundance was significantly upregulated in patients with Pancreatic adenocarcinoma (PAAD) and associated with poor prognosis. We identified the 128th Lysine residue of NMNAT1 as a critical site for lactylation and revealed EP300 as a key lactyltransferase responsible for catalyzing lactylation. Importantly, we elucidated that lactylation of NMNAT1 enhances its nuclear localization and maintains enzymatic activity, thereby supporting the nuclear NAD+ salvage pathway and facilitating cancer growth. Finally, we demonstrated that the NMNAT1-dependent NAD+ salvage pathway promotes cell survival under glucose deprivation conditions and is reliant on the activity of Sirt1. Collectively, our study has unraveled a novel molecular mechanism by which l-lactate promotes cell survival under glucose deprivation conditions, presenting a promising strategy for targeting lactate and NAD+ metabolism in the treatment of PAAD.


Assuntos
Adenocarcinoma , Nicotinamida-Nucleotídeo Adenililtransferase , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Ácido Láctico , NAD/metabolismo , Glucose , Camundongos Nus , Lisina , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
2.
J Nutr Sci Vitaminol (Tokyo) ; 69(3): 184-189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394423

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a coenzyme that mediates many redox reactions in energy metabolism. NAD+ is also a substrate for ADP-ribosylation and deacetylation by poly (ADP-ribose) polymerase and sirtuin, respectively. Nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) is a NAD+ biosynthesizing enzyme found in the nucleus. Recent research has shown that the maintaining NAD+ levels is critical for sustaining muscle functions both in physiological and pathological conditions. However, the role of Nmnat1 in skeletal muscle remains unexplored. In this study, we generated skeletal muscle-specific Nmnat1 knockout (M-Nmnat1 KO) mice and investigated its role in skeletal muscle. We found that NAD+ levels were significantly lower in the skeletal muscle of M-Nmnat1 KO mice than in control mice. M-Nmnat1 KO mice, in contrast, had similar body weight and normal muscle histology. Furthermore, the distribution of muscle fiber size and gene expressions of muscle fiber type gene expression were comparable in M-Nmnat1 KO and control mice. Finally, we investigated the role of Nmnat1 in muscle regeneration using cardiotoxin-induced muscle injury model, but muscle regeneration appeared almost normal in M-Nmnat1 KO mice. These findings imply that Nmnat1 has a redundancy in the pathophysiology of skeletal muscle.


Assuntos
NAD , Nicotinamida-Nucleotídeo Adenililtransferase , Camundongos , Animais , NAD/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Camundongos Knockout , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
3.
Biochem Biophys Res Commun ; 674: 162-169, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37421924

RESUMO

Nicotinamide adenine dinucleotide (NAD+) functions as an essential cofactor regulating a variety of biological processes. The purpose of the present study was to determine the role of nuclear NAD+ biosynthesis, mediated by nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), in thermogenesis and whole-body energy metabolism. We first evaluated the relationship between NMNAT1 expression and thermogenic activity in brown adipose tissue (BAT), a key organ for non-shivering thermogenesis. We found that reduced BAT NMNAT1expression was associated with inactivation of thermogenic gene program induced by obesity and thermoneutrality. Next, we generated and characterized adiponectin-Cre-driven adipocyte-specific Nmnat1 knockout (ANMT1KO) mice. Loss of NMNAT1 markedly reduced nuclear NAD+ concentration by approximately 70% in BAT. Nonetheless, adipocyte-specific Nmnat1 deletion had no impact on thermogenic (rectal temperature, BAT temperature and whole-body oxygen consumption) responses to ß-adrenergic ligand norepinephrine administration and acute cold exposure, adrenergic-mediated lipolytic activity, and metabolic responses to obesogenic high-fat diet feeding. In addition, loss of NMNAT1 did not affect nuclear lysine acetylation or thermogenic gene program in BAT. These results demonstrate that adipocyte NMNAT1 expression is required for maintaining nuclear NAD+ concentration, but not for regulating BAT thermogenesis or whole-body energy homeostasis.


Assuntos
Adipócitos , Metabolismo Energético , Nicotinamida-Nucleotídeo Adenililtransferase , Termogênese , Animais , Camundongos , Camundongos Knockout , Dieta Hiperlipídica , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo
4.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240262

RESUMO

To report the spectrum of Leber congenital amaurosis (LCA) associated genes in a large German cohort and to delineate their associated phenotype. Local databases were screened for patients with a clinical diagnosis of LCA and for patients with disease-causing variants in known LCA-associated genes independent of their clinical diagnosis. Patients with a mere clinical diagnosis were invited for genetic testing. Genomic DNA was either analyzed in a diagnostic-genetic or research setup using various capture panels for syndromic and non-syndromic IRD (inherited retinal dystrophy) genes. Clinical data was obtained mainly retrospectively. Patients with genetic and phenotypic information were eventually included. Descriptive statistical data analysis was performed. A total of 105 patients (53 female, 52 male, age 3-76 years at the time of data collection) with disease-causing variants in 16 LCA-associated genes were included. The genetic spectrum displayed variants in the following genes: CEP290 (21%), CRB1 (21%), RPE65 (14%), RDH12 (13%), AIPL1 (6%), TULP1 (6%), and IQCB1 (5%), and few cases harbored pathogenic variants in LRAT, CABP4, NMNAT1, RPGRIP1, SPATA7, CRX, IFT140, LCA5, and RD3 (altogether accounting for 14%). The most common clinical diagnosis was LCA (53%, 56/105) followed by retinitis pigmentosa (RP, 40%, 42/105), but also other IRDs were seen (cone-rod dystrophy, 5%; congenital stationary night blindness, 2%). Among LCA patients, 50% were caused by variants in CEP290 (29%) and RPE65 (21%), whereas variants in other genes were much less frequent (CRB1 11%, AIPL1 11%, IQCB1 9%, and RDH12 7%, and sporadically LRAT, NMNAT1, CRX, RD3, and RPGRIP1). In general, the patients showed a severe phenotype hallmarked by severely reduced visual acuity, concentric narrowing of the visual field, and extinguished electroretinograms. However, there were also exceptional cases with best corrected visual acuity as high as 0.8 (Snellen), well-preserved visual fields, and preserved photoreceptors in spectral domain optical coherence tomography. Phenotypic variability was seen between and within genetic subgroups. The study we are presenting pertains to a considerable LCA group, furnishing valuable comprehension of the genetic and phenotypic spectrum. This knowledge holds significance for impending gene therapeutic trials. In this German cohort, CEP290 and CRB1 are the most frequently mutated genes. However, LCA is genetically highly heterogeneous and exhibits clinical variability, showing overlap with other IRDs. For any therapeutic gene intervention, the disease-causing genotype is the primary criterion for treatment access, but the clinical diagnosis, state of the retina, number of to be treated target cells, and the time point of treatment will be crucial.


Assuntos
Amaurose Congênita de Leber , Nicotinamida-Nucleotídeo Adenililtransferase , Masculino , Feminino , Humanos , Amaurose Congênita de Leber/genética , Estudos Retrospectivos , Mutação , Proteínas do Olho/genética , Genótipo , Análise Mutacional de DNA , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Oxirredutases do Álcool/genética
5.
Neuromuscul Disord ; 33(4): 295-301, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871412

RESUMO

In the NAD biosynthetic network, the nicotinamide mononucleotide adenylyltransferase (NMNAT) enzyme fuels NAD as a co-substrate for a group of enzymes. Mutations in the nuclear-specific isoform, NMNAT1, have been extensively reported as the cause of Leber congenital amaurosis-type 9 (LCA9). However, there are no reports of NMNAT1 mutations causing neurological disorders by disrupting the maintenance of physiological NAD homeostasis in other types of neurons. In this study, for the first time, the potential association between a NMNAT1 variant and hereditary spastic paraplegia (HSP) is described. Whole-exome sequencing was performed for two affected siblings diagnosed with HSP. Runs of homozygosity (ROH) were detected. The shared variants of the siblings located in the homozygosity blocks were selected. The candidate variant was amplified and Sanger sequenced in the proband and other family members. Homozygous variant c.769G>A:p.(Glu257Lys) in NMNAT1, the most common variant of NMNAT1 in LCA9 patients, located in the ROH of chromosome 1, was detected as a probable disease-causing variant. After detection of the variant in NMNAT1, as a LCA9-causative gene, ophthalmological and neurological re-evaluations were performed. No ophthalmological abnormality was detected and the clinical manifestations of these patients were completely consistent with pure HSP. No NMNAT1 variant had ever been previously reported in HSP patients. However, NMNAT1 variants have been reported in a syndromic form of LCA which is associated with ataxia. In conclusion, our patients expand the clinical spectrum of NMNAT1 variants and represent the first evidence of the probable correlation between NMNAT1 variants and HSP.


Assuntos
Amaurose Congênita de Leber , Nicotinamida-Nucleotídeo Adenililtransferase , Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , NAD , Mutação , Amaurose Congênita de Leber/diagnóstico , Amaurose Congênita de Leber/genética , Linhagem , Nicotinamida-Nucleotídeo Adenililtransferase/genética
6.
Biomed Pharmacother ; 158: 114143, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36528916

RESUMO

Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is an evolutionarily conserved nicotinamide adenine dinucleotide (NAD+) synthase located in the cytoplasm and Golgi apparatus. NMNAT2 has an important role in neurodegenerative diseases, malignant tumors, and other diseases that seriously endanger human health. NMNAT2 exerts a neuroprotective function through its NAD synthase activity and chaperone function. Among them, the NMNAT2-NAD+-Sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1) axis is closely related to Wallerian degeneration. Physical injury or pathological stimulation will cause a decrease in NMNAT2, which activates SARM1, leading to axonal degeneration and the occurrence of amyotrophic lateral sclerosis (ALS), Alzheimer's disease, peripheral neuropathy, and other neurodegenerative diseases. In addition, NMNAT2 exerts a cancer-promoting role in solid tumors, including colorectal cancer, lung cancer, ovarian cancer, and glioma, and is closely related to tumor occurrence and development. This paper reviews the chromosomal and subcellular localization of NMNAT2 and its basic biological functions. We also summarize the NMNAT2-related signal transduction pathway and the role of NMNAT2 in diseases. We aimed to provide a new perspective to comprehensively understand the relationship between NMNAT2 and its associated diseases.


Assuntos
Doenças Neurodegenerativas , Nicotinamida-Nucleotídeo Adenililtransferase , Humanos , Axônios , NAD/metabolismo , Degeneração Walleriana/metabolismo , Degeneração Walleriana/patologia , Doenças Neurodegenerativas/patologia , Progressão da Doença , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
7.
Mamm Genome ; 34(1): 12-31, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36414820

RESUMO

Alternative polyadenylation (APA) determines mRNA stability, localisation, translation and protein function. Several diseases, including obesity, have been linked to APA. Studies have shown that single nucleotide polymorphisms in polyadenylation signals (PAS-SNPs) can influence APA and affect phenotype and disease susceptibility. However, these studies focussed on associations between single PAS-SNP alleles with very large effects and phenotype. Therefore, we performed a genome-wide screening for PAS-SNPs in the polygenic mouse selection lines for fatness and leanness by whole-genome sequencing. The genetic variants identified in the two lines were overlapped with locations of PAS sites obtained from the PolyASite 2.0 database. Expression data for selected genes were extracted from the microarray expression experiment performed on multiple tissue samples. In total, 682 PAS-SNPs were identified within 583 genes involved in various biological processes, including transport, protein modifications and degradation, cell adhesion and immune response. Moreover, 63 of the 583 orthologous genes in human have been previously associated with human diseases, such as nervous system and physical disorders, and immune, endocrine, and metabolic diseases. In both lines, PAS-SNPs have also been identified in genes broadly involved in APA, such as Polr2c, Eif3e and Ints11. Five PAS-SNPs within 5 genes (Car, Col4a1, Itga7, Lat, Nmnat1) were prioritised as potential functional variants and could contribute to the phenotypic disparity between the two selection lines. The developed PAS-SNPs catalogue presents a key resource for planning functional studies to uncover the role of PAS-SNPs in APA, disease susceptibility and fat deposition.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Poliadenilação , Animais , Camundongos , Humanos , Suscetibilidade a Doenças , Magreza , Estabilidade de RNA , Fenótipo , Nicotinamida-Nucleotídeo Adenililtransferase/genética
8.
J Appl Genet ; 64(1): 89-104, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36369640

RESUMO

Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophies and the most frequent cause of congenital blindness in children. To date, 25 genes have been implicated in the pathogenesis of this rare disorder. Performing an accurate molecular diagnosis is crucial as gene therapy is becoming available. This study aimed to report the molecular basis of Leber congenital amaurosis, especially novel and rare variants in 27 Polish families with a clinical diagnosis of LCA fully confirmed by molecular analyses. Whole exome sequencing or targeted next-generation sequencing (NGS) of inherited retinal dystrophies-associated (IRD) genes was applied to identify potentially pathogenic variants. Bidirectional Sanger sequencing and quantitative PCR (qPCR) were carried out for validation and segregation analysis of the variants identified within the families. We identified 28 potentially pathogenic variants, including 11 novel, in 8 LCA genes: CEP290, CRB1, GUCY2D, NMNAT1, RPGRIP1, CRX, LRAT1, and LCA5. This study expands the mutational spectrum of the LCA genes. Moreover, these results, together with the conclusions from our previous studies, allow us to point to the most frequently mutated genes and variants in the Polish cohort of LCA patients.


Assuntos
Amaurose Congênita de Leber , Nicotinamida-Nucleotídeo Adenililtransferase , Distrofias Retinianas , Criança , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/diagnóstico , Polônia , Análise Mutacional de DNA , Mutação , Sequenciamento de Nucleotídeos em Larga Escala , Linhagem , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Antígenos de Neoplasias/genética
9.
Mol Biol Cell ; 34(1): ar4, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322391

RESUMO

Nicotinamide mononucleotide adenylyltransferase (Nmnat) is a class of enzymes with three members (Nmnat1-3). Nmnat1 is in nucleus and associated with Leber congenital amaurosis, a form of early-onset retinal degeneration, while Nmnat2 is in cytoplasm and a well-characterized neuroprotective factor. The differences in their biological roles in the retina are unclear. We performed short hairpin RNA (shRNA)-based loss-of-function analysis of Nmnat2 during mouse retinal development in retinal explant cultures prepared from early (E14.5), middle (E17.5), or late (postnatal day [P]0.5) developmental stages. Nmnat2 has important roles in the survival of retinal cells in the early and middle stages of retinal development. Retinal cell death caused by Nmnat2 knockdown could be partially rescued by supplementation with NAD or nicotinamide mononucleotide (NMN). Survival of retinal cells in the late stage of retinal development was unaffected by Nmnat2, but differentiation of Müller glia was controlled by Nmnat2. RNA-Seq analyses showed perturbation of gene expression patterns by shRNAs specific for Nmnat1 or Nmnat2, but gene ontology analysis did not provide a rational explanation for the phenotype. This study showed that Nmnat2 has multiple developmental stage-dependent roles during mouse retinal development, which were clearly different from those of Nmnat1, suggesting specific roles for Nmnat1 and Nmnat2.


Assuntos
Amaurose Congênita de Leber , Nicotinamida-Nucleotídeo Adenililtransferase , Camundongos , Animais , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Amaurose Congênita de Leber/genética , Retina/metabolismo , Fenótipo , Neurônios/metabolismo , RNA Interferente Pequeno
10.
Mol Vis ; 29: 160-168, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38222451

RESUMO

Purpose: To determine the expression levels of SIRT6 and NMNAT2 in diabetic retinopathy (DR). Methods: We obtained peripheral blood mononuclear cells (PBMCs) and vitreous samples from 77 patients with type 2 diabetes mellitus: 52 with DR and 25 without DR, and 27 healthy control subjects. Western blot analysis and qRT-PCR were performed to evaluate the expression of SIRT6 and NMNAT2 in their PBMCs. The levels of IL-1ß, IL-6, and TNF-α in the vitreous fluid were determined by ELISA. Immunohistochemistry was performed to detect the expression of SIRT6 and NMNAT2 in proliferative DR (PDR) and the control subjects. Results: The expression of SIRT6 and NMNAT2 was markedly downregulated in DR patients, which was negatively correlated with the increased expression of IL-1ß, IL-6 and TNF-α. Additionally, we observed decreased expression of SIRT6 and NMNAT2 in the fibrovascular membranes of PDR patients. Conclusions: The downregulated expression of SIRT6 and NMNAT2 in PDR patients reveals a potential pathogenic association; more extended studies could verify them as potential therapeutic targets.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Nicotinamida-Nucleotídeo Adenililtransferase , Sirtuínas , Humanos , Diabetes Mellitus Tipo 2/complicações , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Biochem Biophys Res Commun ; 637: 58-65, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36375251

RESUMO

Malaria is an infectious disease caused by Plasmodium parasites and has high mortality rates, especially among children in African and Southeast Asian countries. Patients with hemolytic anemia are suggested to adapt protective measures against malarial infection. Nicotinamide adenine dinucleotide (NAD+) is a crucial cofactor associated with numerous biological processes that maintain homeostasis in all living organisms. In a previous study, we had demonstrated that the deficiency of nicotinamide mononucleotide adenylyltransferase 3 (Nmnat3), an enzyme catalyzing NAD+ synthesis, causes hemolytic anemia accompanied by a drastic decline in the NAD+ levels in the erythrocytes. It is well known that hemolytic anemia is linked to a reduced risk of malarial infections. In the present study, we investigated whether hemolytic anemia caused by Nmnat3 deficiency is beneficial against malarial infections. We found that Nmnat3 deficiency exacerbated malarial infection and subsequently caused death. Moreover, we demonstrated that the NAD+ levels in malaria-infected Nmnat3 red blood cells significantly increased and the glycolytic flow was largely enhanced to support the rapid growth of malarial parasites. Our results revealed that hemolytic anemia induced by the deletion of Nmnat3 was harmful rather than protective against malaria.


Assuntos
Anemia Hemolítica , Malária , Nicotinamida-Nucleotídeo Adenililtransferase , Criança , Humanos , Anemia Hemolítica/complicações , Anemia Hemolítica/genética , Eritrócitos/metabolismo , Malária/complicações , NAD/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Animais
12.
Biochem Biophys Res Commun ; 636(Pt 1): 89-95, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36332487

RESUMO

Nicotinamide adenine dinucleotide (NAD+), a biological molecule integral to redox reactions involved in multiple cellular processes, has the potential to treat nonalcoholic fatty liver diseases (NAFLDs) and nonalcoholic steatohepatitis (NASH). Nicotinamide mononucleotide adenylyltransferase (Nmnat1), one of the NAD+ biosynthesizing enzymes, plays a central role in all NAD+ metabolic pathways and it is vital to embryonic development. However, the function of Nmnat1 in metabolic pathology and, specifically, in the development and progression of NAFLD and NASH remains unexplored. First, we generated hepatic Nmnat1 knockout (H-Nmnat1-/-) mice to investigate the physiological function of Nmnat1 and found that NAD+ levels were significantly lower in H-Nmnat1-/- mice than control mice. However, H-Nmnat1-/- mice appeared normal with comparable metabolic activity. Next, we used three different diet-induced NASH models to assess the pathophysiological role of Nmant1 in metabolic disorders and discovered that hepatic loos of Nmnat1 decreased 35%-40% of total NAD+ in an obese state. Nevertheless, our analysis of phenotypic variations found comparable body composition, gene expression, and liver histology in all NASH models in H-Nmnat1-/- mice. We also found that aged H-Nmnat1-/- mice exhibited comparable liver phenotypes with control mice. These findings suggest that Nmnat1 has a redundancy to the pathophysiology of obesity-induced hepatic disorders.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , NAD/metabolismo , Fígado/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Obesidade/metabolismo , Dieta , Camundongos Endogâmicos C57BL
13.
Genes (Basel) ; 13(9)2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36140798

RESUMO

Inherited retinal dystrophies (IRDs) are a heterogeneous group of degenerative disorders of the retina. Retinitis Pigmentosa (RP) is a common type of IRD that causes night blindness and loss of peripheral vision and may progress to blindness. Mutations in more than 300 genes have been associated with syndromic and non-syndromic IRDs. Recessive forms are more frequent in populations where endogamy is a social preference, such as Pakistan. The aim of this study was to identify molecular determinants of IRDs with the common presentation of night blindness in consanguineous Pakistani families. This study included nine consanguineous IRD-affected families that presented autosomal recessive inheritance of the night blindness phenotype. DNA was extracted from blood samples. Targeted exome sequencing of 344 known genes for retinal dystrophies was performed. Screening of nine affected families revealed two novel (c.5571_5576delinsCTAGATand c.471dup in EYS and SPATA7 genes, respectively) and six reported pathogenic mutations (c.304C>A, c.187C>T, c.1560C>A, c.547C>T, c.109del and c.9911_11550del in PDE6A, USH2A, USH2A, NMNAT1, PAX6 and ALMS1 genes, respectively) segregating with disease phenotype in each respective family. Molecular determinants of hereditary retinal dystrophies were identified in all screened families. Identification of novel variants aid future diagnosis of retinal dystrophies and help to provide genetic counseling to affected families.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Cegueira Noturna , Distrofias Retinianas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , DNA/genética , Análise Mutacional de DNA , Exoma/genética , Proteínas do Olho/genética , Humanos , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Cegueira Noturna/genética , Paquistão , Linhagem , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética
14.
Curr Opin Chem Biol ; 69: 102176, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780654

RESUMO

During axon degeneration, NAD+ levels are largely controlled by two enzymes: nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha and toll interleukin motif containing protein 1 (SARM1). NMNAT2, which catalyzes the formation of NAD+ from NMN and ATP, is actively degraded leading to decreased NAD+ levels. SARM1 activity further decreases the concentration of NAD+ by catalyzing its hydrolysis to form nicotinamide and a mixture of ADPR and cADPR. Notably, SARM1 knockout mice show decreased neurodegeneration in animal models of axon degeneration, highlighting the therapeutic potential of targeting this novel NAD+ hydrolase. This review discusses recent advances in the SARM1 field, including SARM1 structure, regulation, and catalysis as well as the identification of the first SARM1 inhibitors.


Assuntos
Proteínas do Domínio Armadillo , Nicotinamida-Nucleotídeo Adenililtransferase , Animais , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Biologia , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Camundongos , NAD/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
15.
Hum Mol Genet ; 31(17): 2918-2933, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35397003

RESUMO

Parkinson's disease is characterized by the deposition of α-synuclein, which leads to synaptic dysfunction, the loss of neuronal connections and ultimately progressive neurodegeneration. Despite extensive research into Parkinson's disease pathogenesis, the mechanisms underlying α-synuclein-mediated synaptopathy have remained elusive. Several lines of evidence suggest that altered nicotinamide adenine dinucleotide (NAD+) metabolism might be causally related to synucleinopathies, including Parkinson's disease. NAD+ metabolism is central to the maintenance of synaptic structure and function. Its synthesis is mediated by nicotinamide mononucleotide adenylyltransferases (NMNATs), but their role in Parkinson's disease is not known. Here we report significantly decreased levels of NMNAT3 protein in the caudate nucleus of patients who have died with Parkinson's disease, which inversely correlated with the amount of monomeric α-synuclein. The detected alterations were specific and significant as the expression levels of NMNAT1, NMNAT2 and sterile alpha and TIR motif containing 1 (SARM1) were not significantly different in Parkinson's disease patients compared to controls. To test the functional significance of these findings, we ectopically expressed wild-type α-synuclein in retinoic acid-differentiated dopaminergic SH-SY5Y cells that resulted in decreased levels of NMNAT3 protein plus a neurite pathology, which could be rescued by FK866, an inhibitor of nicotinamide phosphoribosyltransferase that acts as a key enzyme in the regulation of NAD+ synthesis. Our results establish, for the first time, NMNAT3 alterations in Parkinson's disease and demonstrate in human cells that this phenotype together with neurite pathology is causally related to α-synucleinopathy. These findings identify alterations in the NAD+ biosynthetic pathway as a pathogenic mechanism underlying α-synuclein-mediated synaptopathy.


Assuntos
Neuroblastoma , Nicotinamida-Nucleotídeo Adenililtransferase , Doença de Parkinson , Sinucleinopatias , Neurônios Dopaminérgicos/metabolismo , Humanos , NAD/metabolismo , Neuritos/metabolismo , Neuroblastoma/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
16.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408818

RESUMO

The homeostasis of NAD+ anabolism is indispensable for maintaining the NAD+ pool. In mammals, the mainly synthetic pathway of NAD+ is the salvage synthesis, a reaction catalyzed by nicotinamide mononucleotide adenylyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase (NMNATs) successively, converting nicotinamide (NAM) to nicotinamide mononucleotide (NMN) and NMN to NAD+, respectively. However, the relationship between NAD+ anabolism disturbance and diabetic nephropathy (DN) remains elusive. Here our study found that the disruption of NAD+ anabolism homeostasis caused an elevation in both oxidative stress and fibronectin expression, along with a decrease in Sirt1 and an increase in both NF-κB P65 expression and acetylation, culminating in extracellular matrix deposition and globular fibrosis in DN. More importantly, through constitutively overexpressing NMNAT1 or NAMPT in human mesangial cells, we revealed NAD+ levels altered inversely with NMN levels in the context of DN and, further, their changes affect Sirt1/NF-κB P65, thus playing a crucial role in the pathogenesis of DN. Accordingly, FK866, a NAMPT inhibitor, and quercetin, a Sirt1 agonist, have favorable effects on the maintenance of NAD+ homeostasis and renal function in db/db mice. Collectively, our findings suggest that NMN accumulation may provide a causal link between NAD+ anabolism disturbance and diabetic nephropathy (DN) as well as a promising therapeutic target for DN treatment.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , NAD , Nicotinamida-Nucleotídeo Adenililtransferase , Animais , Nefropatias Diabéticas/metabolismo , Humanos , Células Mesangiais/metabolismo , Camundongos , NAD/metabolismo , NF-kappa B/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Sirtuína 1/metabolismo
17.
J Biol Chem ; 298(5): 101912, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398355

RESUMO

Molecular chaperones safeguard cellular protein homeostasis and obviate proteotoxicity. In the process of aging, as chaperone networks decline, aberrant protein amyloid aggregation accumulates in a mechanism that underpins neurodegeneration, leading to pathologies such as Alzheimer's disease and Parkinson's disease. Thus, it is important to identify and characterize chaperones for preventing such protein aggregation. In this work, we identified that the NAD+ synthase-nicotinamide mononucleotide adenylyltransferase (NMNAT) 3 from mouse (mN3) exhibits potent chaperone activity to antagonize aggregation of a wide spectrum of pathological amyloid client proteins including α-synuclein, Tau (K19), amyloid ß, and islet amyloid polypeptide. By combining NMR spectroscopy, cross-linking mass spectrometry, and computational modeling, we further reveal that mN3 uses different region of its amphiphilic surface near the active site to directly bind different amyloid client proteins. Our work demonstrates a client recognition mechanism of NMNAT via which it chaperones different amyloid client proteins against pathological aggregation and implies a potential protective role for NMNAT in different amyloid-associated diseases.


Assuntos
Proteínas Amiloidogênicas , Nicotinamida-Nucleotídeo Adenililtransferase , Proteínas Amiloidogênicas/metabolismo , Animais , Camundongos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Agregação Patológica de Proteínas/fisiopatologia
18.
PLoS One ; 17(4): e0266805, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421138

RESUMO

OBJECTIVE: Gastric cancer (GC) is one of the most common tumour diseases worldwide and has poor survival, especially in the Asian population. Exploration based on biomarkers would be efficient for better diagnosis, prediction, and targeted therapy. METHODS: Expression profiles were downloaded from the Gene Expression Omnibus (GEO) database. Survival-related genes were identified by gene set enrichment analysis (GSEA) and univariate Cox. Then, we applied a Bayesian hierarchical lasso Cox model for prognostic signature screening. Protein-protein interaction and Spearman analysis were performed. Kaplan-Meier and receiver operating characteristic (ROC) curve analysis were applied to evaluate the prediction performance. Multivariate Cox regression was used to identify prognostic factors, and a prognostic nomogram was constructed for clinical application. RESULTS: With the Bayesian lasso Cox model, a 9-gene signature included TNFRSF11A, NMNAT1, EIF5A, NOTCH3, TOR2A, E2F8, PSMA5, TPMT, and KIF11 was established to predict overall survival in GC. Protein-protein interaction analysis indicated that E2F8 was likely related to KIF11. Kaplan-Meier analysis showed a significant difference between the high-risk and low-risk groups (P<0.001). Multivariate analysis demonstrated that the 9-gene signature was an independent predictor (HR = 2.609, 95% CI 2.017-3.370), and the C-index of the integrative model reached 0.75. Function enrichment analysis for different risk groups revealed the most significant enrichment pathway/term, including pyrimidine metabolism and respiratory electron transport chain. CONCLUSION: Our findings suggested that a novel prognostic model based on a 9-gene signature was developed to predict GC patients in high-risk and improve prediction performance. We hope our model could provide a reference for risk classification and clinical decision-making.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Neoplasias Gástricas , Teorema de Bayes , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Humanos , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
19.
Mol Ther ; 30(4): 1421-1431, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35114390

RESUMO

The lack of neuroprotective treatments for retinal ganglion cells (RGCs) and optic nerve (ON) is a central challenge for glaucoma management. Emerging evidence suggests that redox factor NAD+ decline is a hallmark of aging and neurodegenerative diseases. Supplementation with NAD+ precursors and overexpression of NMNAT1, the key enzyme in the NAD+ biosynthetic process, have significant neuroprotective effects. We first profile the translatomes of RGCs in naive mice and mice with silicone oil-induced ocular hypertension (SOHU)/glaucoma by RiboTag mRNA sequencing. Intriguingly, only NMNAT2, but not NMNAT1 or NMNAT3, is significantly decreased in SOHU glaucomatous RGCs, which we confirm by in situ hybridization. We next demonstrate that AAV2 intravitreal injection-mediated overexpression of long half-life NMNAT2 mutant driven by RGC-specific mouse γ-synuclein (mSncg) promoter restores decreased NAD+ levels in glaucomatous RGCs and ONs. Moreover, this RGC-specific gene therapy strategy delivers significant neuroprotection of both RGC soma and axon and preservation of visual function in the traumatic ON crush model and the SOHU glaucoma model. Collectively, our studies suggest that the weakening of NMNAT2 expression in glaucomatous RGCs contributes to a deleterious NAD+ decline, and that modulating RGC-intrinsic NMNAT2 levels by AAV2-mSncg vector is a promising gene therapy for glaucomatous neurodegeneration.


Assuntos
Glaucoma , Nicotinamida-Nucleotídeo Adenililtransferase , Animais , Modelos Animais de Doenças , Terapia Genética , Glaucoma/genética , Glaucoma/metabolismo , Glaucoma/terapia , Camundongos , NAD/metabolismo , NAD/farmacologia , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/farmacologia , Células Ganglionares da Retina/metabolismo
20.
Ophthalmic Genet ; 43(3): 400-408, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35026968

RESUMO

Leber congenital amaurosis (LCA), although rare, is one of the most severe forms of early-onset inherited retinal dystrophy (IRD). Here, we review the molecular genetics and phenotypic characteristics of patients with NMNAT1-associated IRD. The longitudinal clinical and molecular findings of a Japanese girl diagnosed with LCA associated with pathogenic variants in NMNAT1 c.648delG, (p.Trp216Ter*) and c.709C>T (p.Arg237Cys) have been described to highlight the salient clinical features of NMNAT1-associated IRD.


Assuntos
Amaurose Congênita de Leber , Nicotinamida-Nucleotídeo Adenililtransferase , Distrofias Retinianas , Feminino , Humanos , Japão , Amaurose Congênita de Leber/diagnóstico , Amaurose Congênita de Leber/genética , Mutação , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Linhagem , Distrofias Retinianas/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA